Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?

Problem C. 1401. (February 2017)

C. 1401. The positive numbers \(\displaystyle x\), \(\displaystyle y\) satisfy the equation \(\displaystyle x^3+y^3=x-y\). Prove that \(\displaystyle x^2+y^2<1\).

(5 pont)

Deadline expired on March 10, 2017.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Mivel \(\displaystyle x\) és \(\displaystyle y\) pozitív számok, így

\(\displaystyle x^3+y^3=x-y=\frac{(x-y)(x^2+xy+y^2 )}{x^2+xy+y^2}=\frac{x^3-y^3}{x^2+xy+y^2}.\)

Átrendezve:

\(\displaystyle x^2+xy+y^2=\frac{x^3-y^3}{x^3+y^3}.\)

Ebből következik, hogy

\(\displaystyle x^2+y^2<x^2+xy+y^2=\frac{x^3-y^3}{x^3+y^3}<1,\)

mert a tört számlálója kisebb, mint a nevezője.

Tehát \(\displaystyle x^2+y^2<1\).


Statistics:

119 students sent a solution.
5 points:96 students.
4 points:6 students.
3 points:4 students.
2 points:5 students.
0 point:6 students.
Unfair, not evaluated:2 solutionss.

Problems in Mathematics of KöMaL, February 2017