KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 1401. The positive numbers \(\displaystyle x\), \(\displaystyle y\) satisfy the equation \(\displaystyle x^3+y^3=x-y\). Prove that \(\displaystyle x^2+y^2<1\).

(5 points)

Deadline expired on 10 March 2017.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Mivel \(\displaystyle x\) és \(\displaystyle y\) pozitív számok, így

\(\displaystyle x^3+y^3=x-y=\frac{(x-y)(x^2+xy+y^2 )}{x^2+xy+y^2}=\frac{x^3-y^3}{x^2+xy+y^2}.\)

Átrendezve:

\(\displaystyle x^2+xy+y^2=\frac{x^3-y^3}{x^3+y^3}.\)

Ebből következik, hogy

\(\displaystyle x^2+y^2<x^2+xy+y^2=\frac{x^3-y^3}{x^3+y^3}<1,\)

mert a tört számlálója kisebb, mint a nevezője.

Tehát \(\displaystyle x^2+y^2<1\).


Statistics on problem C. 1401.
119 students sent a solution.
5 points:96 students.
4 points:6 students.
3 points:4 students.
2 points:5 students.
0 point:6 students.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, February 2017

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley