KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

C. 842. We built a large solid cube out of more than ten wooden cubes of unit edge, each. Then we painted all faces of the large cube. Is it possible that the number of unit cubes that have some faces painted is a multiple of the number of the unpainted ones?

(5 points)

Deadline expired on 16 March 2006.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Ha k3 darab (a feltétel miatt k>2) kiskockából raktuk össze a nagyot, akkor a festetlen kockák száma (k-2)3, a festetteké pedig k3-(k-2)3. Ez utóbbi pontosan akkor többszöröse az előbbinek, ha hányadosuk egész, vagyis

{k^3-(k-2)^3\over(k-2)^3}=\left({k\over k-2}\right)^3-1

egész, ami csak akkor lehet, ha {k\over k-2}=1+{2\over k-2} egész, vagyis ha k=3 vagy 4.


Statistics on problem C. 842.
344 students sent a solution.
5 points:221 students.
4 points:58 students.
3 points:14 students.
2 points:11 students.
1 point:12 students.
0 point:7 students.
Unfair, not evaluated:21 solutions.


  • Problems in Mathematics of KöMaL, February 2006

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program