KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 845. (March 2006)

C. 845. In an algebra class on the first of April, the students were practising. The task was to simplify the fraction


\frac{{(x+2)}^3+{(y+x)}^3}{{(x+2)}^3-{(y-2)}^3}.

Agnes, who was the best at mathematics in the class, suggested that if the denominator is not zero, they should just cross out the threes in all the indices, that is, write


\frac{x+2+y+x}{x+2-(y-2)}= \frac{2x+y+2}{x-y+4}.

Check the result.

(5 pont)

Deadline expired on 18 April 2006.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás: Természetesen ez az ,,egyszerűsítés" nem megengedhető, hibás lépés. Végezzünk átalakításokat (az a3+b3 és az a3-b3 szorzattá bontását alkalmazzuk):

{(x+2)^3+(y+x)^3\over (x+2)^3-(y-2)^3}={(2x+y+2)((x^2+2x+4-2y+xy+y^2)\over(x-y+4)(x^2+2x+4-2y+xy+y^2)}={2x+y+2\over x-y+4}.

Vagyis a végeredmény jó.


Statistics:

>
292 students sent a solution.
5 points:264 students.
4 points:5 students.
3 points:4 students.
2 points:3 students.
1 point:5 students.
0 point:11 students.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley