KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem C. 864. (September 2006)

C. 864. A triangle is drawn on squared paper. The lengths of the sides are 2\sqrt{10}, 3\sqrt5 and 5 units. Prove that the measure of the smallest angle is 45o.

(Suggested by G. Holló, Budapest)

(5 pont)

Deadline expired on 16 October 2006.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás: Mivel az 5 a háromszög legkisebb oldala, ezért úgy írjuk fel a koszinusz-tételt, hogy az 5-tel szemközti szög szerepjen benne:

5^2=(2\sqrt{10})^2 +(3\sqrt5)^2-2\cdot(2\sqrt{10})\cdot(3\sqrt5)\cdot\cos\varphi.

Ebből \cos\varphi=\frac{60}{60\sqrt2}=\frac{1}{\sqrt2}, vagyis \varphi=45o.


Statistics:

>
566 students sent a solution.
5 points:402 students.
4 points:104 students.
3 points:8 students.
2 points:16 students.
0 point:30 students.
Unfair, not evaluated:6 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley