KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

C. 872. Consider a quadrant of a disc of radius 12 cm. A semicircle is drawn over one of the radii bounding the quadrant, and cut out of it. What is the radius of the largest possible circle that can be inscribed in the remaining figure?

(5 points)

Deadline expired on 15 December 2006.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A PQR derékszögű háromszögben RQ2=r2+x2, a POR derékszögű háromszögben RO2=62+x2. Az OQR derékszögű háromszögben RQ2+RO2=QO2, vagyis r2+x2+62+x2=(r+6)2, amiből 2x2=12r.

ST=SQ+QT, vagyis 12=r+\sqrt{(2x)^2+r^2}=r+\sqrt{24r+r^2}, amit rendezve 12-r=\sqrt{24r+r^2}, négyzetre emelve és rendezve r=3.


Statistics on problem C. 872.
393 students sent a solution.
5 points:319 students.
4 points:12 students.
3 points:5 students.
2 points:3 students.
1 point:3 students.
0 point:51 students.


  • Problems in Mathematics of KöMaL, November 2006

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program