KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 882. The legs of a right-angled triangle are a and b. The line segment of length d connecting the vertex of the right angle to a point of the hypotenuse encloses an angle \delta with the leg a. Prove that


\frac{1}{d}= \frac{\cos\delta}{a}+ \frac{\sin\delta}{b}.

(5 points)

Deadline expired on 15 February 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Jelölje az átfogó adott pontját P, és legyen x=PB, y=PA. (A, illetve B a megfelelő oldalakkal szemközti csúcsokat jelöli.) Ekkor \frac{\sin\delta}{\sin\beta}=\frac{x}{d}, \frac{\sin(90^{\circ}-\delta)}{\sin\alpha}=\frac{y}{d}. A két egyenletet összeadva, és sin \beta helyére \frac{b}{x+y}-t, sin (90o-\delta) helyére cos \delta-t, végül sin \alpha helyére \frac{a}{x+y}-t beírva, majd x+y-nal egyszerüsítve éppen a bizonyítandó állítást kapjuk.


Statistics on problem C. 882.
281 students sent a solution.
5 points:264 students.
4 points:5 students.
3 points:1 student.
2 points:2 students.
1 point:3 students.
0 point:5 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, January 2007

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley