KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

C. 900. 75% of a certain three-digit number of different digits consists of the same digits as the original number but with no digit in the same place. Which number is it?

(5 points)

Deadline expired on 15 June 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Lehet 3.abc=4.bca vagy 3.abc=4.cab. Vagyis 296a=370b+37c vagy 397c=260b+26c. Az első esetben 8a=10b+c. A második eset nem jöhet létre, mert 397c csak úgy lehetne 13-mal osztható, ha c is osztható 13-mal.

Az a lehetséges 10 értékét végignézve nyolc háromjegyű megoldást kapunk: 216, 324, 432, 540, 648, 756, 864, 972.


Statistics on problem C. 900.
172 students sent a solution.
5 points:120 students.
4 points:21 students.
3 points:4 students.
2 points:7 students.
1 point:3 students.
Unfair, not evaluated:17 solutions.


  • Problems in Mathematics of KöMaL, May 2007

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program