KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

C. 922. Find all integer solutions of the equation x2+12=y4.

(5 points)

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Mindkét oldalból x2-et kivonva kapjuk, hogy:

12=y4-x2=(y2)2-x2.

Mivel két szomszédos négyzetszám közötti különbség egyre nő, ahogy az alapok nőnek, ezért egy idő után a szomszédos négyzetszámok közötti különbség nagyobb lesz, mint 12. Ekkor persze a nem szomszédosok közti különbség szintén nagyobb lesz, mint 12. Írjuk fel a négyzetszámokat addig, amíg a szomszédosok különbsége el nem éri a 12-t:

1, 4, 9, 16, 25, 36, 49.

Az elmondottak miatt a megoldás csak ezek között lehet. Itt pedig csak a 4 és a 16 különbsége 12, tehát y4=16, x2=4 és így a megoldások: x1=2, y1=2; x2=2, y2=-2, x3=-2 y3=2 és x4=-2, y4=-2.


Statistics on problem C. 922.
352 students sent a solution.
5 points:200 students.
4 points:43 students.
3 points:43 students.
2 points:35 students.
1 point:11 students.
0 point:8 students.
Unfair, not evaluated:12 solutions.


  • Problems in Mathematics of KöMaL, December 2007

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program