KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

C. 986. Find all integers that may be the measure, in degrees, of the angles of a regular polygon.

(5 points)

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Az n oldalú konvex sokszög belső szögeinek összege (n-2).180o. Tudjuk, hogy egy szabályos sokszög minden belső szöge egyenlő, ezért minden csúcsnál a belső szög nagysága \frac{(n-2)\cdot180^{\circ}}{n}=\frac{n\cdot180^{\circ}-360^{\circ}}{n}=180^{\circ}-\frac{360^{\circ}}{n}. Vagyis azt kell megvizsgálnunk, hogy milyen n\geq3 egész szám esetén lesz a 180-\frac{360}{n} is egész. A 360=23.32.5 osztóit kell megkeresnünk, de kihagyjuk az 1, 2 értékeket (ilyen oldalszámmal nem létezik sokszög).

22-féle olyan szabályos sokszög van, amelyben a belső szögek fokokban mért mérőszáma egész szám. Az oldalak száma a következő 22 szám lehet:

3, 4, 5, 6, 8, 9, 10, 12, 15, 18, 20, 24, 30, 36, 40, 45, 60, 72, 90, 120, 180, 360.

Az n oldalszám ismeretében a 180^{\circ}-\frac{360^{\circ}}{n} képlettel kiszámítjuk a megfelelő szabályos sokszög egy szögének mérőszámát. A következő számokat kapjuk:

60, 90, 108, 120, 135, 140, 144, 150, 156, 160, 162, 165, 168, 170, 171, 172, 174, 175, 176, 177, 178, 179.


Statistics on problem C. 986.
204 students sent a solution.
5 points:126 students.
4 points:27 students.
3 points:17 students.
2 points:3 students.
1 point:11 students.
0 point:9 students.
Unfair, not evaluated:11 solutions.


  • Problems in Mathematics of KöMaL, April 2009

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program