KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 987. The lengths of the sides of a triangle cut out of paper are 8 cm, 10 cm and 12 cm. The triangle is folded along a line through the common vertex so that the shortest side overlaps with the longest side. A double-layer part and a single-layer part are obtained. Prove that the single-layer part is an isosceles triangle.

(5 points)

Deadline expired on 15 May 2009.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Készítsünk vázlatrajzot!

A hajtogatás következtében APC\triangle\cong APC'\triangle. Ekkor CAP\angle=C'AP\angle, tehát a P pont az A csúcsból induló szögfelező és az a oldal metszéspontja.

Az egybevágóság miatt AC'=AC=8, így BC'=4.

A háromszög szögfelezőjének osztásarányáról szóló tétel szerint: \frac{BP}{PC}=\frac{12}{8}. Legyen BP=12x és PC=8x. Ekkor 12x+8x=10, amiből x=\frac12. Így PC=8\cdot\frac12=4, amivel egyenlő a PC' is.

Ezzel beláttuk, hogy PC'=BC'=4, azaz a C'PB háromszög (az egyrétegű rész) valóban egyenlő szárú.


Statistics on problem C. 987.
186 students sent a solution.
5 points:111 students.
4 points:49 students.
3 points:10 students.
2 points:2 students.
1 point:3 students.
0 point:3 students.
Unfair, not evaluated:8 solutions.


  • Problems in Mathematics of KöMaL, April 2009

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program  
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley