KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 991. A right-angled triangle of sides 3, 4, 5 is cut into two parts with a line perpendicular to the hypotenuse. One part is a quadrilateral that has an inscribed circle, and the other part is a right-angled triangle. Find the lengths of the sides of the quadrilateral.

(5 points)

Deadline expired on 15 June 2009.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Legyen a=3, b=4, c=5.

1.eset: Az egyenes a b oldalt metszi a Qb pontban.

Legyen BP=x, ekkor PA=5-x. Mivel AQ_bP\triangle\approx ABC\triangle, ezért \frac{PQ_b}{5-x}=\frac34~\Rightarrow~PQ_b=\frac34(5-x) és \frac{Q_bA}{5-x}=\frac54~\Rightarrow~Q_bA=\frac54(5-x).

Ekkor CQ_b=4-\frac54(5-x)=\frac{5x-9}{4}.

Mivel BCQbP érintőnégyszög, azért BC+QbP=CQb+PB, azaz 3+\frac34(5-x)=\frac{5x-9}{4}+x, ebből x=3.

Tehát a négyszög oldalai 3; 1,5; 1,5; 3.

2. eset: Az egyenes az a oldalt metszi a Qa pontban. Legyen AP=x, ekkor PB=5-x. Mivel BQ_aP\triangle\approx BAC\triangle, ezért \frac{PQ_a}{5-x}=\frac43~\Rightarrow~PQ_a=\frac43(5-x) és \frac{Q_aB}{5-x}=\frac53~\Rightarrow~Q_aB=\frac53(5-x).

Ekkor CQ_a=3-\frac53(5-x)=\frac{5x-16}{3}.

Mivel APQaC érintőnégyszög, azért AC+QaP=CQa+PA, 4+\frac43(5-x)=\frac{5x-16}{3}+x, ebből x=4.

Tehát a négyszög oldalai 4; \frac43; \frac43; 4.


Statistics on problem C. 991.
123 students sent a solution.
5 points:76 students.
4 points:5 students.
3 points:30 students.
2 points:8 students.
1 point:3 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, May 2009

  • Támogatóink:   Ericsson   Google   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program  
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley