KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

C. 993. The midpoint of the base AB of an isosceles triangle ABC is F. Let D denote the orthogonal projection of point F onto side BC. Let E be the midpoint of the line segment DF. Prove that CE is perpendicular to AD.

(5 points)

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Legyen H az A csúcs BC oldalra eső merőleges vetülete.

ABH\triangle\approx CFD\triangle, mert szögeik egyenlők. (HAB\angle=DCF\angle=90o-\beta és BHA\angle=FDC\angle=90o.)

Mivel AD és CE két hasonló háromszög megfelelő súlyvonalai, ezért ADH\triangle\approx CED\triangle. Ebből következik, hogy HAD\angle=DCE\angle. Tudjuk még, hogy AH\perp DC, és így HAD és DCE szögek merőleges szárú szögek, tehát a másik két száruk is merőleges egymásra.


Statistics on problem C. 993.
79 students sent a solution.
5 points:70 students.
4 points:4 students.
3 points:1 student.
2 points:1 student.
1 point:1 student.
0 point:1 student.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, May 2009

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program