KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

C. 997. Prove that every fourth term of the Fibonacci sequence is divisible by three. (In the Fibonacci sequence, a1=1, a2=1 and an=an-1+an-2 for all n\in \mathbb{N}, n\ge3.)

(5 points)

Deadline expired on 12 October 2009.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Bizonyítás teljes indukcióval: \(\displaystyle a_4=3\) ami osztható \(\displaystyle 3\)-mal. Minden negyedik sorozat-elem sorszáma \(\displaystyle 4\)-gyel osztható, azaz az \(\displaystyle a_{4k}\) tagokról szól a feladat. Tegyük fel, hogy minden \(\displaystyle k<n\)-re \(\displaystyle 3\mid a_{4k}.\)

\(\displaystyle a_{4(n+1)}=a_{4n+3}+a_{4n+2}=a_{4n+2}+a_{4n+1}+a_{4n+2}=2(a_{4n}+a_{4n+1})+a_{4n+1}=2a_{4n}+3a_{4n+1}\)

a sorozat definícióját háromszor alkalmazva. Ezek szerint a következő negyedik tag egy hárommal osztható (az indukciós feltevés szerint) és egy másik háromszorosa összegeként kapható meg, amiből következik, hogy maga is osztható 3-mal.


Statistics on problem C. 997.
435 students sent a solution.
5 points:210 students.
4 points:72 students.
3 points:93 students.
2 points:42 students.
1 point:12 students.
0 point:2 students.
Unfair, not evaluated:4 solutions.


  • Problems in Mathematics of KöMaL, September 2009

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley