KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem G. 589. (December 2016)

G. 589. If an object were projected on the Moon first at an angle of elevation of \(\displaystyle 60^\circ\) and then at an angle of elevation of \(\displaystyle 30^\circ\), by what factor would the height and the time of flight be greater in the first case than those of in the second case?

(3 pont)

Deadline expired on 10 January 2017.


Sorry, the solution is available only in Hungarian. Google translation

Ha a hajítás szöge \(\displaystyle 60^\circ\)-os, akkor a \(\displaystyle v_0\) nagyságú kezdősebesség függőleges komponense \(\displaystyle v_1=\frac{\sqrt{3}}{2}v_0.\) A mozgás \(\displaystyle T\) idejét a \(\displaystyle g\frac{T}{2}=v_1\) összefüggésből számíthatjuk ki, ahol \(\displaystyle g\) a nehézségi gyorsulás a Holdon.

\(\displaystyle T(60^\circ)= \frac{v_0}{g}\sqrt{3},\)

az emelkedés magassága pedig

\(\displaystyle h(60^\circ)=v_1^\text{átlag}\frac{T}{2}=v_1\frac{T}{4}=\frac{3v_0^2}{8g}. \)

A második esetben, \(\displaystyle 30^\circ\)-os hajítási szögnél a kezdősebesség függőleges komponense: \(\displaystyle v_1=\frac12 v_0,\) és így

\(\displaystyle T(30^\circ)= \frac{v_0}{g}, \quad \text{illetve}\qquad h(30^\circ)=\frac{v_0^2}{8g}.\)

A kérdezett arányok (\(\displaystyle g\)-től és \(\displaystyle v_0\)-tól függetlenül)

\(\displaystyle \frac{h(60^\circ)}{h(30^\circ)}=3,\qquad \frac{T(60^\circ)}{T(30^\circ)}=\sqrt{3}.\)


Statistics:

37 students sent a solution.
3 points:Bálint Boglárka Eszter, Beke Csongor, Békési Péter, Bottlik Domonkos, Csóti Kristóf, Czett Mátyás, Fekete András Albert, Fialovszky Márk, Garamvölgyi István Attila, Geretovszky Anna, Holányi Zsófia, Horváth 999 Anikó, Kis 194 Károly, Kocsmár Martin, Kozmér Barbara, Kupás Lőrinc, Marozsák Tádé, Pácsonyi Péter, Rozgonyi Gergely, Rusvai Miklós, Šárai Krisztina, Szabó 888 Péter, Szakáll Lili, Tanner Norman, Urszuly Csenge, Veres Kristóf, Vincze Lilla, Virág Levente.
2 points:Fecske Benjámin, Kalabay László, Kozák 023 Áron, Merkl Levente, Schneider Anna.
1 point:3 students.
0 point:1 student.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley