Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
 Already signed up? New to KöMaL?

# Problem I. 308. (December 2012)

I. 308. The first Formula 1 Championship was organized in Hungary in 1986. In this task you are going to work with the data collected that year. You should use the UTF-8 encoded and tabulator separated text file 1986.txt downloadable from our site.

Whenever appropriate, you should use - possibly copyable - formulae.

[1.] The content of the file 1986.txt should be copied to a  Places(Helyezések) sheet beginning with cell A1.

[2.] Data from the 1st row of sheet Places should be copied to a Points sheet beginning with cell B6, moreover, the content of columns A and B of sheet Places should also be copied so that data coming from the 1st row and columns A and B become adjacent in sheet Points.

The following tasks refer to the Points sheet.

[3.] In range D7:S36 you should determine the drivers' points obtained in each race. The 1st, 2nd, ..., 6th place is worth 9, 6, 4, 3, 2 and 1 point, respectively. If a driver did not score any points in a particular race, the corresponding cell should remain empty. Auxiliary computations can be performed on sheet Places beginning with cell A40.

[4.] Cell T6 should contain the text Total points'' (Összpontszám). Below this you should determine for each driver their total number of points scored in 1986.

[5.] Cell A6 should contain the text Place'' (Helyezés). Below this you should determine for each driver their place, based on their total number of points.

[6.] The content of the first line should be formatted according to the sample. By writing a driver's name into cells B2 and B3, values of cells A2:A3 and C2:T3 should be determined by a formula that can be copied flawlessly throughout the whole range.

[7.] Cells U1:W1 should be filled according to the sample (Dobogós'' means standing on a podium, Pontszerző'' is who scored points, while Helyezetlen'' is unplaced). Then cells U2:W3 should be determined accordingly by using an appropriate formula.

[8.] You should display the points scored in each race for two selected drivers on a bar chart. A second diagram should show the ratio between the podium results, point-scoring results and the unplaced ones for both drivers. These diagrams should be placed beginning with row 5, and have the same total width as the filled columns above them.

[9.] The 2nd and 3rd rows should be colored according to the column colors of the diagram. The range A1:W3 should be formatted according to the sample.

The spreadsheet (i308.xlsx, i308.ods, ...) containing your solution and a description (i308.txt, i308.pdf, ...) giving some details on your approach and the version number of the application should be submitted in a compressed file (i308.zip).

(10 pont)

Deadline expired on January 10, 2013.

Sorry, the solution is available only in Hungarian. Google translation

F3. Legtöbben az Fkeres függvényt használták, de meglepően sokan választották az egymásba ágyazott Ha függvényt is.

F5. A helyezés megállapítására a Sorszám függvény a legalkalmasabb, de megfelelő paraméterezéssel a Darabteli függvény is helyes eredményt ad.

F6. A teljes megadott tartományban (még az A2, A3 cellákban is!) működik az Index-Hol.van páros, de az - első oszlop celláit kivéve - az Fkeres függvény is teljesíti a feladat követelményeit, ha az oszlop számánál az Oszlop függvényt is használjuk.

F7. A feladatot általában a Darab függvények megfelelő elemével oldották meg a beküldők.

F8. A diagram készítésénél többen vesztettek pontot a skála megfelelő beállításánal elmulasztásával.

Sokan hibátlan megoldást adtak a feladatra - ahogy ez el is várható egy érettségi feladat esetében. A feladathoz mellékelt, a megoldás menetét mutató leírás terjedelmét és minőségét tekintve elég vegyesnek bizonyult. Az értékelésben a dokumentációért 10 százalékot ért.

A több jó közül a legegyszerűbb megoldás Gema Barnabásé volt: i308.xlsx

### Statistics:

 12 students sent a solution. 10 points: Gema Barnabás, Jákli Aida Karolina, Láposi Viktória, Qian Lívia, Tegzes Tamás. 9 points: Farkas 1230 Gábor, Fényes Balázs, Szőts Dávid István, Tomku György. 8 points: 2 students. 7 points: 1 student.

Problems in Information Technology of KöMaL, December 2012