Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
 Already signed up? New to KöMaL?

Problem I. 348. (April 2014)

I. 348. Your task is to create a one-person game that can be played offline. The description of the game is given below.

The game takes place on a closed board of $\displaystyle n\times n$ unit squares ($\displaystyle n=7, \dots, 10$). When the game starts, the program draws $\displaystyle k$ horizontal and $\displaystyle k$ vertical ($\displaystyle n< k< 2n$) sides of some squares such that the corresponding area is connected (a certain area is connected if every square can be reached within the area from any other square). The player's task is to draw (by clicking) as many new walls as possible such that the area is still connected.

The game ends when the connectedness is violated, or the player does not click within 5 seconds.

Walls drawn by the program and the player should be different. At the end your program should display the number of built walls and the total playing time.

The source code file(s) should be submitted in a compressed file (i348.zip), together with a short documentation (i348.pdf) consisting of a brief description of your solution and specifying the name of the developer environment to compile your source.

(10 pont)

Deadline expired on May 12, 2014.

Sorry, the solution is available only in Hungarian. Google translation

A megoldók többsége HTML alapú megoldást adott be, de készült C#-ban valamint Lazarusban is program.

A megoldásnak két kritikus pontja volt, a falak behúzása valamint játék végének (összefüggőség megszűnésének) megállapítása. Előbbit volt, aki labirintus generálásával, majd falak törlésével alkotta meg, utóbbinál széltében keresés is megoldást jelentett. (A generálásnál a kevés fal miatt a véletlenszerű próbálkozás is működhetett.)

A beküldött megoldásokból Kovács Balázs Marcell megoldása volt a legteljesebb. (i348kovacsbalazs.zip)

Az értékelésben az alábbi szempontokat vettük figyelembe: I348ertekeles.pdf

Statistics:

 6 students sent a solution. 10 points: Fényes Balázs, Kovács Balázs Marcell. 8 points: 2 students. 7 points: 1 student. 0 point: 1 student.

Problems in Information Technology of KöMaL, April 2014