KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 106. (December 2006)

K. 106. The sum of the squares of three consecutive odd natural numbers is a four-digit number of identical digits. Find all possible sets of three such numbers. Are there five consecutive odd natural numbers, such that the sum of their squares is a six-digit number of equal digits?

(6 pont)

Deadline expired on 10 January 2007.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Írjuk fel a három egymást követő páratlan szám négyzetének összegét! (a-2)2+a2+(a+2)2=3a2+8. Mivel a páratlan, ezért a kapott négyzetösszeg is páratlan; másrészt pedig a négyzetösszeg nem osztható 3-mal, így csak 1111, 5555, 7777 lehet az értéke. A lehetőségeket megvizsgálva csak a 41, 43, 45 számhármas megfelelő, melyek négyzetének összege 5555.

Öt egymást követő páratlan szám négyzetének összege (a-4)2+(a-2)2+a2+(a+2)2+(a+4)2=5a2+40. Ez 5-tel osztható, így értékére csak az 555 555 jöhetne szóba, de ekkor a nem lenne egész szám. Így nem találhatunk öt megfelelő számot.


Statistics:

157 students sent a solution.
6 points:97 students.
5 points:13 students.
4 points:19 students.
3 points:6 students.
2 points:4 students.
1 point:2 students.
0 point:8 students.
Unfair, not evaluated:6 solutions.
Unfair, not evaluated:2 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley