KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

K. 116. Let us make 3×3 Latin squares out of a deck of French cards. (There is a card in each field of the Latin square.) Number cards are worth the value printed on them; jacks, queens, kings and aces are worth 11, 12, 13 and 1, respectively. In a Latin square, the sum of the numbers is the same in each row, column and diagonal. Let us call this equal sum the ``magic number'' of the square.

a) What is the largest possible magic number that can be achieved if all the nine cards used are clubs?

b) Is there a square whose magic number is 37 if any 9 cards may be used?

(6 points)

This problem is for grade 9 students only.

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. a) A lehető legnagyobb bűvös szám akkor keletkezhet, ha a treff színűek közül a legnagyobb értékű lapokat használjuk fel. Ha a bűvös négyzetben szereplő számokat összeadjuk, akkor a bűvös szám háromszorosát kapjuk. Jelen esetben ez 13+12+11+10+9+8+7+6+5 = 81, tehát a legnagyobb lehetséges bűvös szám a 27. Meg kell még mutatni, hogy ez a bűvös négyzet tényleg létezik is:

10 J 6

5 9 K

Q 7 8

b) A lehető legnagyobb bűvös szám akkor keletkezne, ha a 9 legnagyobb értékű lapot használnánk fel, azaz 4 királyt, 4 dámát és egy bubit. Ekkor a lapok pontértékének összege 111, a bűvös szám 37 lenne. Tehát csak a 4 király, 4 dáma, 1 bubi összetételű bűvös négyzet jöhet szóba. Azonban ez a bűvös négyzet nem megvalósítható. A bubi mellé két király kell, hogy a 37 bűvös számként kijöjjön. A bubi nem állhat egyik átlóban sem, mert akkor vele egy oszlopban, sorban és átlóban is két-két király állna (ezek mind különbözők lennének), és ennyi király nincs. Ha viszont a bubi a négyzet egyik oldalának közepén áll, és a sorokban és oszlopokban 37 az összeg (lásd ábra), akkor egyik átlóban sem jön ki a bűvös szám.

K J K

Q K Q

Q K Q


Statistics on problem K. 116.
106 students sent a solution.
6 points:Dávid Nikolett, Kiss Dávid, Kovács 729 Gergely, Mihálka Éva Zsuzsanna, Pasztuhov Anna, Straubinger Péter.
5 points:Csere Kálmán, Garamszegi Balázs, Gerencsér András, Major Bálint István, Najbauer Eszter Éva, Poócza Eszter, Welsz Edit.
4 points:8 students.
3 points:16 students.
2 points:21 students.
1 point:27 students.
0 point:20 students.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, February 2007

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program