KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

K. 127. Every digit of a four-digit positive integer is multiplied by four, and a four- digit number is obtained that is four times the original number. How many such four-digit numbers are there?

(6 points)

This problem is for grade 9 students only.

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

1. megoldás: A feladatban vázolt állapot csak abban az esetben jöhet létre, ha az eredeti számot 4-gyel megszorozva sehol sincs maradékátvitel, tehát a számjegyek értéke legfeljebb 2 lehet. Az első helyen így kétféle számjegy (1 vagy 2) állhat, a további helyeken pedig háromféle (0, 1 vagy 2), tehát a megfelelő számok darabszáma 2.3.3.3=54 db.

2. megoldás: A négyjegyű szám csak a 0, 1, 2 számjegyekből állhat, amiket tekinthetünk 3-as számrendszerben felírt számoknak. A 3-as számrendszerben felírható négyjegyű számok száma 34-33=81-27=54.

Barsi Ádám (Kaposvár, Táncsics M. Gimn., 9. évf.) megoldása alapján


Statistics on problem K. 127.
308 students sent a solution.
6 points:196 students.
5 points:53 students.
4 points:11 students.
3 points:11 students.
2 points:10 students.
1 point:4 students.
0 point:16 students.
Unfair, not evaluated:5 solutions.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, September 2007

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program