KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 132. (September 2007)

K. 132. How many six-digit numbers are there in which the sum of the squares of the digits is 9?

(6 pont)

Deadline expired on 10 October 2007.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás: A legnagyobb számjegy nem lehet 3-nál több. A legnagyobb számjegy értéke szerint haladva az alábbi lehetőségeket kapjuk a keresett szám jegyeire: 3, 0, 0, 0, 0, 0, valamint 2, 2, 1, 0, 0, 0, továbbá 2, 1, 1, 1, 1, 1.

A 3, 0, 0, 0, 0, 0 számjegyekből csak egy darab hatjegyű szám képezhető. A 2, 2, 1, 0, 0, 0 számjegyekből képezhető 2-vel kezdődő hatjegyű számok száma 5.4 (5 helyre tehetjük a másik 2-est, 4 helyre az 1-est), az 1-gyel kezdődő hatjegyű számok száma pedig ennek fele, mert a két kettest nem tudjuk egymástól megkülönböztetni. Tehát a 2, 2, 1, 0, 0, 0 számjegyekből 30 db hatjegyű szám képezhető. A 2, 1, 1, 1, 1, 1 számokból 6 db hatjegyű szám képezhető, mert ennyi helyre kerülhet a 2-es. Tehát összesen 37 megfelelő hatjegyű szám van.


Statistics:

282 students sent a solution.
6 points:62 students.
5 points:73 students.
4 points:25 students.
3 points:33 students.
2 points:46 students.
1 point:19 students.
0 point:18 students.
Unfair, not evaluated:5 solutions.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley