KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 132. How many six-digit numbers are there in which the sum of the squares of the digits is 9?

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 October 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: A legnagyobb számjegy nem lehet 3-nál több. A legnagyobb számjegy értéke szerint haladva az alábbi lehetőségeket kapjuk a keresett szám jegyeire: 3, 0, 0, 0, 0, 0, valamint 2, 2, 1, 0, 0, 0, továbbá 2, 1, 1, 1, 1, 1.

A 3, 0, 0, 0, 0, 0 számjegyekből csak egy darab hatjegyű szám képezhető. A 2, 2, 1, 0, 0, 0 számjegyekből képezhető 2-vel kezdődő hatjegyű számok száma 5.4 (5 helyre tehetjük a másik 2-est, 4 helyre az 1-est), az 1-gyel kezdődő hatjegyű számok száma pedig ennek fele, mert a két kettest nem tudjuk egymástól megkülönböztetni. Tehát a 2, 2, 1, 0, 0, 0 számjegyekből 30 db hatjegyű szám képezhető. A 2, 1, 1, 1, 1, 1 számokból 6 db hatjegyű szám képezhető, mert ennyi helyre kerülhet a 2-es. Tehát összesen 37 megfelelő hatjegyű szám van.


Statistics on problem K. 132.
282 students sent a solution.
6 points:62 students.
5 points:73 students.
4 points:25 students.
3 points:33 students.
2 points:46 students.
1 point:19 students.
0 point:18 students.
Unfair, not evaluated:5 solutions.
Unfair, not evaluated:1 solution.


  • Problems in Mathematics of KöMaL, September 2007

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program  
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley