KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

Competitions Portal

K. 137. The number of elements in set A is larger than the number of elements in set B, but less than the double of the number of elements in set B. Set B has 16 more subsets than set C. How many subsets may set A have?

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 November 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Ha a B halmaznak k db eleme van, a C halmaznak pedig n, akkor B részhalmazainak száma 2k, C részhalmazainak száma 2n. Tehát a két kettőhatvány különbsége 16. Ha mindkettő nagyobb 32-nél, akkor a különbségük már akkor is legalább 32, ha szomszédos kettőhatványok. Ha az egyik nagyobb 32-nél, a másik pedig 32 vagy kisebb, akkor is legalább 32 a különbség. Ha mindkettő kisebb vagy egyenlő 32-nél, akkor könnyen ellenőrizhető, hogy csak a 32 és a 16 jelent megoldást. Tehát a B halmaznak 25 db részhalmaza, így 5 eleme van. Mivel az A halmaz elemszáma B elemszámánál több, de B elemszámának kétszeresénél kisebb, ezért az A halmaz 6, 7, 8 vagy 9 elemű, részhalmazainak száma 64, 128, 256 vagy 512 lehet.


Statistics on problem K. 137.
197 students sent a solution.
6 points:105 students.
5 points:23 students.
4 points:10 students.
3 points:7 students.
2 points:10 students.
0 point:32 students.
Unfair, not evaluated:6 solutions.
Unfair, not evaluated:4 solutions.


  • Problems in Mathematics of KöMaL, October 2007

  • Our web pages are supported by:   Ericsson   Google   Cognex   Emberi ErőforrĂĄs TĂĄmogatĂĄskezelő   Emberi ErőforrĂĄsok MinisztĂŠriuma  
    OktatĂĄskutatĂł ĂŠs Fejlesztő IntĂŠzet   Nemzeti TehetsĂŠg Program     Nemzeti
KulturĂĄlis Alap   ELTE   Morgan Stanley