KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

K. 144. Consider the seven-digit numbers made out of the digits 1, 2, 3, 4, 5, 6, 7 by using each of them once. What is the sum of all such numbers?

(6 points)

This problem is for grade 9 students only.

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Nézzük az összeget helyiértékenként! Az első helyen a kapott számok közül annyiban szerepel az 1, ahányféle sorrendben a többi hat számot a maradék hat helyen leírhatjuk, azaz 6! = 720-ban. Ugyanígy a 2, a 3, a 4, az 5, a 6 és a 7 is 720-szor szerepel az első helyen. Így amikor összeadjuk a hétjegyű számokat, akkor az első helyeken szereplő számjegyek helyiérték szerinti összege 720.(1+2+3+4+5+6+7).1000000. Hasonló módon kapjuk a második helyen szereplő számjegyek helyiérték szerinti összegét: 720.(1+2+3+4+5+6+7).100000, és a többi helyiértéken álló számjegyek összegét is. Tehát a keresett összeg 720.(1+2+3+4+5+6+7).(1000000+100000+...+1)=720.28.1111111=22399997760.


Statistics on problem K. 144.
202 students sent a solution.
6 points:99 students.
5 points:17 students.
4 points:29 students.
3 points:14 students.
2 points:2 students.
1 point:3 students.
0 point:32 students.
Unfair, not evaluated:6 solutions.


  • Problems in Mathematics of KöMaL, November 2007

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program