KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 144. Consider the seven-digit numbers made out of the digits 1, 2, 3, 4, 5, 6, 7 by using each of them once. What is the sum of all such numbers?

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 December 2007.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Nézzük az összeget helyiértékenként! Az első helyen a kapott számok közül annyiban szerepel az 1, ahányféle sorrendben a többi hat számot a maradék hat helyen leírhatjuk, azaz 6! = 720-ban. Ugyanígy a 2, a 3, a 4, az 5, a 6 és a 7 is 720-szor szerepel az első helyen. Így amikor összeadjuk a hétjegyű számokat, akkor az első helyeken szereplő számjegyek helyiérték szerinti összege 720.(1+2+3+4+5+6+7).1000000. Hasonló módon kapjuk a második helyen szereplő számjegyek helyiérték szerinti összegét: 720.(1+2+3+4+5+6+7).100000, és a többi helyiértéken álló számjegyek összegét is. Tehát a keresett összeg 720.(1+2+3+4+5+6+7).(1000000+100000+...+1)=720.28.1111111=22399997760.


Statistics on problem K. 144.
206 students sent a solution.
6 points:99 students.
5 points:17 students.
4 points:29 students.
3 points:14 students.
2 points:2 students.
1 point:3 students.
0 point:32 students.
Unfair, not evaluated:6 solutions.
Unfair, not evaluated:4 solutions.


  • Problems in Mathematics of KöMaL, November 2007

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley