KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

K. 174. a) Is it possible for the sum of four consecutive odd numbers to be a four-digit number with all digits identical? b) Is it possible for the sum of five consecutive odd numbers to be a five-digit number with all digits identical? c) Is it possible for the sum of eight consecutive even numbers to be an eight-digit number with all digits identical?

(6 points)

This problem is for grade 9 students only.

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. a) Jelölje a négy egymást követő páratlan számot a-3, a-1, a+1, a+3, ahol a egy páros szám. Ekkor a számok összege 4a, ami osztható 8-cal, tehát a szóba jöhető egyetlen megfelelő négyjegyű szám a 8888. Ekkor a=2222, tehát a négy páratlan szám 2219, 2221, 2223, 2225. Ezek összege valóban 8888.

b) Az öt egymást követő páros szám legyen a-4, a-2, a, a+2, a+4, ahol a egy páros szám. Ezek összege 5a, tehát osztható 10-zel. Viszont nincs olyan ötjegyű szám, amelynek minden számjegye azonos, és osztható 10-zel, így nincs a feltételeknek megfelelő öt darab páros szám.

c) Jelölje a nyolc egymást követő páratlan számot a-7, a-5, a-3, a-1, a+1, a+3, a+5, a+7 ahol a egy páros szám. Ekkor a számok összege 8a, ami osztható 16-tal. A nyolcjegyű, egyforma számjegyekből álló számok közül csak a 88 888 888 osztható 8-cal, de nem osztható 16-tal, tehát nincs nyolc, a feltételeknek megfelelő páratlan szám.


Statistics on problem K. 174.
243 students sent a solution.
6 points:109 students.
5 points:36 students.
4 points:34 students.
3 points:13 students.
2 points:22 students.
1 point:2 students.
0 point:18 students.
Unfair, not evaluated:9 solutions.


  • Problems in Mathematics of KöMaL, September 2008

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program