KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

K. 177. On what condition will the sum of the squares of six consecutive natural numbers be divisible by 7?

(6 points)

This problem is for grade 9 students only.

Deadline expired.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Ha hét egymást követő természetes számot vizsgálnánk 7-tel való osztási maradék alapján, akkor a 0, 1, 2, 3, 4, 5, 6 mindegyike előfordulna maradékként. Mivel egy szorzat maradéka a tényezők maradékai szorzatának maradéka, így a hét szomszédos természetes szám négyzetének összege 7-tel való osztáskor annyi maradékot ad, mint amennyit a maradékok négyzetének összege: 0^2 + 1^2 + \ldots + 6^2 = 91. Mivel a 91 osztható 7-tel, ezért a hét számból csak a 7-tel osztva 0 maradékot adó szám hagyható ki, egyébként a négyzetek összeg nem lenne osztható 7-tel. Így a feltételnek megfelelő hat szomszédos természetes szám egyike sem osztható 7-tel.


Statistics on problem K. 177.
215 students sent a solution.
6 points:91 students.
5 points:31 students.
4 points:11 students.
3 points:41 students.
2 points:14 students.
1 point:11 students.
0 point:7 students.
Unfair, not evaluated:9 solutions.


  • Problems in Mathematics of KöMaL, October 2008

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program