KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 190. (December 2008)

K. 190. In a vote, 55% of the boys and 5% of the girls voted ``Yes''. Thus the majority voted ``Yes''. How many boys may have voted ``No'' at least?

(6 pont)

Deadline expired on 10 January 2009.


Sorry, the solution is available only in Hungarian. Google translation

1. megoldás. Ha x fiú és y lány vett részt a szavazáson, akkor az igen szavazatok száma \frac{0,55x+0,05y}{x+y}>0,5. Rendezve az egyenlőtlenséget x>9y, azaz több, mint kilencszer annyi fiú szavazott, mint lány. A legkevesebb szavazót akkor kapjuk, ha csak 1 lány szavazott igennel, amihez legalább 20 lány kellett összesen. Eszerint több, mint 180 fiú szavazó volt, és mivel ezeknek az 55%-a egész, ezért legkevesebb 200 a fiú szavazók száma. Ennek 45%-a, 90 fiú szavazott nemmel.

2. megoldás. A fiúk 45%-a nemmel szavazott, így 10% az igen előnye a fiúknál. A lányok 95%-a nemmel szavazott, így 90%- a ,,nem" előnye a lányoknál. Ha mégis több lett az igen, akkor az azt jelenti, hogy a fiúk 10%-a több, mint a lányok 90%-a, így több, mint 9-szer annyi fiú van, mint lány. Legkevesebb fiú akkor van, ha legkevesebb lány van ilyen körülmények között, azaz az 5% lány 1 fő, tehát 20 lány van és több mint 180 fiú. Így legalább 90 fiú szavazott nemmel.


Statistics:

162 students sent a solution.
6 points:71 students.
5 points:29 students.
4 points:12 students.
3 points:13 students.
2 points:3 students.
1 point:8 students.
0 point:22 students.
Unfair, not evaluated:4 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley