KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 196. (January 2009)

K. 196. In a kite, there is a 90o angle opposite the 60o angle. It is symmetrical to its diagonal of length 10 cm. Find its perimeter.

(6 pont)

Deadline expired on 10 February 2009.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Az ABC szabályos háromszögben: BE=\frac{\sqrt3}{2}a. Az ACD egyenlő szárú derékszögű háromszögben: DE=\frac a2. Mivel BD=10, ezért \frac{\sqrt3}{2}a+\frac a2=10 cm. Ebből kapjuk: a=\frac{20}{\sqrt3+1}.

Az AED egyenlő szárú derékszögű háromszögben: AD=b=\frac a2\sqrt2=\frac{10}{\sqrt3+1}\sqrt2.

k=2(a+b)=2\left(\frac{20}{\sqrt3+1}
+\frac{10}{\sqrt3+1}\cdot\sqrt2
\right)=\frac{40+20\sqrt2}{\sqrt3+1}\approx 24,99.

Vagyis a deltoid kerülete kb. 25 cm.


Statistics:

159 students sent a solution.
6 points:109 students.
5 points:8 students.
4 points:9 students.
3 points:2 students.
2 points:2 students.
1 point:3 students.
0 point:13 students.
Unfair, not evaluated:13 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley