KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 211. We have five peaches of different sizes and three apples of different sizes. We need to divide them into two packs of four fruits, each of which contains an apple. In how many different ways can we do that? (Two divisions are considered different if the fruits of different types and sizes are not divided in the same way.)

(6 points)

This problem is for grade 9 students only.

Deadline expired on 12 October 2009.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Mivel mindkét csomagban van alma, ezért a barackokat mindig egy hármas és egy kettes csoportra kell osztani. Ha az egyik csomagot megcsináljuk, akkor a másikba a maradék kerül: hányféle képen választhatunk a gyümölcsökből, hogy legalább egy alma van benne? Az öt különböző barackból a hármas csoportot \(\displaystyle \binom{5}{3}\)-féle képen választhatunk – ekkor a maradék 1 gyümölcsöt az almák közül háromféle képen választhatjuk. Ezek szerint \(\displaystyle 10\cdot 3=30\)-féle képen választhatjuk két csoportra a 8 gyümölcsöt. Ugyanezt kapjuk, ha a 2 barack-2 alma csomagok számát számoljuk ki: \(\displaystyle \binom{5}{2}\cdot \binom{3}{2}=10\cdot 3=30\). A csomagok sorrendje nem számít: 30 szétosztás lehetséges.


Statistics on problem K. 211.
262 students sent a solution.
6 points:116 students.
5 points:32 students.
4 points:32 students.
3 points:23 students.
2 points:18 students.
1 point:6 students.
0 point:29 students.
Unfair, not evaluated:6 solutions.


  • Problems in Mathematics of KöMaL, September 2009

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley