KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 224. (December 2009)

K. 224. There are dice of six and four faces (cubes and tetrahedra) on a table. Their faces are numbered with dots, 1 to 6 and 1 to 4, respectively. The number of all dots on the dice is 323. If we had as many six-sided dice as we have of the four-sided dice and vice versa, the number of dots would be 185. How many dice of each kind are there on the table?

(6 pont)

Deadline expired on 11 January 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Egy dobókockán összesen \(\displaystyle 21\) pötty van és \(\displaystyle h\) darab dobókockánk van. A ,,dobótetraéderek'' mindegyikén \(\displaystyle 10\) pötty van, a számuk \(\displaystyle t\). A pöttyök száma összesen \(\displaystyle 21h+10t=314\), a megfordított szituációban \(\displaystyle 10h+21t=182\). A két egyenlet különbségének 11-ed részéből \(\displaystyle h-t=12\), azaz \(\displaystyle h=12+t\). Pl. az első összefüggésbe visszahelyettesítve \(\displaystyle 252+21t+10t=314\), amiből \(\displaystyle t=2\) és \(\displaystyle h=14\). \(\displaystyle \mathbf{14}\) dobókockánk és \(\displaystyle \mathbf{2}\) dobótetraéderünk van.


Statistics:

173 students sent a solution.
6 points:93 students.
5 points:21 students.
4 points:6 students.
3 points:3 students.
2 points:2 students.
1 point:1 student.
0 point:1 student.
Unfair, not evaluated:6 solutions.
Unfair, not evaluated:40 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley