KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 245. Solve the following equations, where x and y denote positive prime numbers.

axy(x+y)=2010, bxy(x+y)=2009.

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 March 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. \(\displaystyle a)\) Mivel \(\displaystyle 2010=2 \cdot 3 \cdot 5 \cdot 67\) , ezért az \(\displaystyle (x, y)\) számpár lehetséges értékei: (2, 3); (2, 5); (2, 67); (3, 5); (3, 67); (5, 67). A lehetőségeket kipróbálva azt kapjuk, hogy egyik számpár sem megfelelő. Vagyis az egyenletnek nincs megoldása.

\(\displaystyle b)\) Mivel a 2009 páratlan, ezért \(\displaystyle x\) és \(\displaystyle y\) csak páratlan prímek lehetnek. Ekkor az összegük páros, tehát a bal oldali kifejezés páros, így nem lehet 2009. Tehát nincs megoldás.


Statistics on problem K. 245.
129 students sent a solution.
6 points:59 students.
5 points:12 students.
4 points:16 students.
3 points:18 students.
2 points:14 students.
1 point:4 students.
0 point:3 students.
Unfair, not evaluated:3 solutions.


  • Problems in Mathematics of KöMaL, February 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley