KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

MBUTTONS

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 248. The diagram shows a net of a cube. In how many different ways is it possible to colour two of the six squares red, and the other four with four different colours: white, green, yellow and blue, so that the resulting cube does not have two adjacent faces of the same colour?

(6 points)

This problem is for grade 9 students only.

Deadline expired on 12 April 2010.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Számozzuk meg a négyzeteket!

Az összehajtás után az 1-nek a 6, a 6-nak az 1 kivételével mindegyik a szomszédja lesz; a 2-nek az 5, az 5-nek a 2 kivételével mindegyik a szomszédja lesz; a 3-nak a 4, a 4-nek a 3 kivételével mindegyik a szomszédja lesz. Pirosra tehát csak az 1-6, 2-5 vagy 3-4 oldalakat festhetjük, így a piros lapok elhelyezésére három lehetőség adódik. Bármelyik párost választjuk pirosnak, akkor a megmaradt négy négyzetet 24 különböző módon tudjuk kifesteni. Vagyis 72 különböző módon színezhető a feltételeknek megfelelő módon az ábra.


Statistics on problem K. 248.
133 students sent a solution.
6 points:78 students.
5 points:31 students.
4 points:6 students.
3 points:4 students.
2 points:7 students.
1 point:2 students.
Unfair, not evaluated:5 solutions.


  • Problems in Mathematics of KöMaL, March 2010

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley