KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 263. (October 2010)

K. 263. Charles writes the numbers 3, 5, 6 on three cards, and Charlotte writes the numbers 8, 9, 10 on three cards. Each of them selects two cards at random out of the three of their own. Charles multiplies his two numbers, and Charlotte adds hers. What is the probability that Charles will get a greater number than Charlotte?

(6 pont)

Deadline expired on 10 November 2010.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Karcsi szorzatai 15, 18, 30 lehet, Karola összegei pedig 17, 18, 19. Összesen \(\displaystyle 3\cdot 3=9\) féle képpen hasonlíthatják össze eredményeiket, ezek közül pedig akkor lesz Karcsié a nagyobb, ha \(\displaystyle 3\cdot 6>8+9\), illetve \(\displaystyle 5\cdot 6\) mindig nagyobb, mint Karola összegei, tehát 4 esetben. Ezért annak a valószínűsége, hogy Karcsi eredménye nagyobb Karoláénál \(\displaystyle \frac49\).


Statistics:

353 students sent a solution.
6 points:234 students.
5 points:40 students.
4 points:31 students.
3 points:10 students.
2 points:6 students.
1 point:12 students.
0 point:3 students.
Unfair, not evaluated:17 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley