KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 276. (December 2010)

K. 276. Given eight three-digit numbers, we write them next to each other in pairs to form six-digit numbers in all possible ways. We observe that there is always a six-digit number among them that is divisible by 7. Why is that so?

(6 pont)

Deadline expired on 10 January 2011.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Egy számot 7-tel osztva 7 különböző maradékot kaphatunk, ezért a nyolc szám között - a skatulya-elv szerint - biztosan van két olyan, melyek 7-tel osztva ugyan azt a maradékot adják (\(\displaystyle p\)-t): legyenek \(\displaystyle N=7k+p\) és \(\displaystyle M=7l+p\). Ekkor egymás után írva \(\displaystyle 1000N+M\) vagy \(\displaystyle 1000M+N\) lesz a kapott hatjegyű szám értéke. A 7-tel való oszthatóság szerint vizsgálva pedig \(\displaystyle (143\cdot 7 -1)(7k+p)+(7l+p)=7000k+1001p+7l\) vagy \(\displaystyle (143\cdot 7 -1)(7l+p)+(7k+p)=7000l+1001p+7k\). Mivel az összegekben minden tag osztható 7-tel, ezért a hatjegyű számok is oszthatóak 7-tel.


Statistics:

129 students sent a solution.
6 points:73 students.
5 points:6 students.
4 points:11 students.
3 points:14 students.
2 points:6 students.
1 point:6 students.
0 point:7 students.
Unfair, not evaluated:6 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley