KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 278. Each of the two diagrams below shows three regular polygons (some of which are stellated polygons) that meet at a vertex. Do they really touch each other along their sides in both cases, or is there a diagram that ``lies''?

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 February 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Az első ábrában a csillag-kilenc-szög oldalainak metszéspontjai egy szabályos kilencszöget alkotnak (forgás-szimmetria miatt), ezért az egymást metsző oldalak egymással \(\displaystyle 140^\circ\)-os szöget zárnak be. A csillagszög csúcsa és a vele szemközti oldalon levő két oldalmetszéspont alkotta háromszög szögei ezért \(\displaystyle 40^\circ, 40^\circ, 100^\circ\). A szabályos hatszög szögei \(\displaystyle 120^\circ\), továbbá a szabályos kilencszög szögei \(\displaystyle 140^\circ\). A közös csúcsban egymáshoz csatlakoztatva sorban a sokszögek oldalait egy szögtartományt határoznak meg. Ha ez a szög teljes szög, akkor az ábra nem csal. Mivel \(\displaystyle 100^\circ+120^\circ+140^\circ=360^\circ\), ezért az első ábra nem csal.

A második ábrán egy csillag-tízszöget használtak. Az oldalak metszéspontjai közül az a 10, mely a sokszög középpontjához legközelebb van, egy szabályos tízszöget alkot, melynek szögei \(\displaystyle 144^\circ\). Ezen tízszög oldalegyenesei tehát \(\displaystyle 36^\circ\)-os szöget zárnak be egymással. Egy oldalegyenes és az őt \(\displaystyle 36^\circ\)-ban metsző két másik oldal alkotta háromszög harmadik szöge ezért \(\displaystyle 108^\circ\). (Ezen oldalak metszéspontjai, melyek távolab vannak a szabályos tízszöget alkotóknál, de közelebb, mint az eredeti csillagtízszög csúcsai egy csillagtízszöget alkotnak \(\displaystyle 108^\circ\)-os szögekkel.) Az eredeti csillagtízszög egy csúcsával szemközti két oldal és a csúcsból induló két oldal egy deltoidot határoznak meg, melynek három szöge ismert: \(\displaystyle 144^\circ, 72^\circ, 72^\circ\). Ezért az eredeti csillagtízszög szöge \(\displaystyle 72^\circ\). A szabályos tízszög szöge \(\displaystyle 144^\circ\), a szabályos kilencszög szöge pedig \(\displaystyle 140^\circ\). Összegük \(\displaystyle 366^\circ\), ami több, mint egy teljes szög, ezért az ábra csal, mert egy csúcs mentén egymás után illesztve a sokszögeket egymásba fognak lógni.


Statistics on problem K. 278.
164 students sent a solution.
6 points:100 students.
5 points:23 students.
4 points:21 students.
3 points:5 students.
1 point:3 students.
0 point:5 students.
Unfair, not evaluated:7 solutions.


  • Problems in Mathematics of KöMaL, January 2011

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley