Középiskolai Matematikai és Fizikai Lapok
Informatika rovattal
Kiadja a MATFUND Alapítvány
Már regisztráltál?
Új vendég vagy?
A régi honlapot akarom!!! :-)

A K. 283. feladat (2011. február)

K. 283. Egy csapatversenyen hatfős csapatokban versenyeznek a diákok. A csapatok összeállítása tetszőleges, de két feltételnek eleget kell tenni:

1. minden csapatban legalább két lánynak, és legalább két fiúnak kell lennie,

2. minden csapatban legalább két hetedikesnek és legalább két nyolcadikosnak kell lennie.

Egy három hetedikes lányból, négy nyolcadikos fiúból és két nyolcadikos lányból álló baráti társaság hányféle, a feltételeknek megfelelő csapatot nevezhet?

(6 pont)

A beküldési határidő 2011. március 10-én LEJÁRT.


Megoldás. Mivel a társaságban csak nyolcadikos fiúk vannak, ezért a csapatba közülük kettőt választva mindkét feltétel fele teljesül. A második szerint azonban két hetedikes lányt is kell választani, ami az első feltétel hiányzó felét is teljesíti. Az ötödik és hatodik csapattagot tetszőlegesen választhatjuk a maradék öt diák közül. Foglaljuk táblázatba, hogy a hetedikes lányok (hl), nyolcadikos fiúk (nyf) és nyolcadikos lányok (nyl) közül hány szerepel egy-egy csapatban, és számoljuk ki az ilyen összetételű csapatok számát.

hl nyf nyl csapatok száma
2 2 2 \(\displaystyle 3\cdot 6 \cdot 1=18\)
2 3 1 \(\displaystyle 1\cdot 6 \cdot 2=12\)
3 2 1 \(\displaystyle 3\cdot 4 \cdot 2=24\)
3 3 0 \(\displaystyle 1\cdot 4 \cdot 1=4\)

Összesen tehát \(\displaystyle 18+12+24+4=58\) különböző csapatot tudnak nevezni a feltételeknek megfelelően.


Statisztika:

157 dolgozat érkezett.
6 pontot kapott:Arnold Balázs, Árvay Júlia, Aszalós Eszter, Balogh Tamás, Bátorfi János György, Csibi Levente, Csóti Annamária, Daku Gábor, Déri Tamás, Di Giovanni Márk, Fülöp Zsófia, Gurka Éva Mária, Gyulánszki Dávid, Haty Eleonóra, Juhász Renáta, Kácsor Szabolcs, Katona Adrienn, Kocsis Gergely, Kóródi Brúnó Zoltán, Kóródy Mátyás, Kovács Anita 2, Lőrinczy Zsófia Noémi, Makk László, Németh Klára Anna, Németh Mónika Eszter, Pálya Zsófia, Pásztor Zsanett, Paulovics Zoltán, Pogány Zsombor, Rácz 413 Bence, Roósz Péter, Rovó Judit, Sárvári Mátyás, Sárvári Péter, Seres Nikoletta, Somogyi Réka, Somogyvári Kristóf, Szelestei Dorottya, Telek Máté László, Tihanyi Dániel, Tóth 095 Zsombor, Tőkés Anna, Varga-Dudás Zsófia, Vető Bálint, Vörös Zoltán János, Vuchetich Bálint.
5 pontot kapott:6 versenyző.
4 pontot kapott:12 versenyző.
3 pontot kapott:33 versenyző.
2 pontot kapott:6 versenyző.
1 pontot kapott:47 versenyző.
0 pontot kapott:4 versenyző.
Nem versenyszerű:3 dolgozat.

A KöMaL 2011. februári matematika feladatai