KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

ELTE

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 284. An isosceles right-angled triangle of unit legs is cut into two pieces by a line perpendicular to the hypotenuse. One piece is a kite, the other piece is a triangle. What percentage is the area of the kite of the area of the original triangle?

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 March 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. A vágással egy 1, \(\displaystyle x\), \(\displaystyle x\), 1 oldalú deltoidra és egy \(\displaystyle x\) befogójú, egyenlőszárú derékszögű háromszögre osztottuk az egységbefogójú háromszöget. A deltoidot egyik átlója két, egybevágó derékszögű háromszögre bontja, melynek befogói 1 és \(\displaystyle x\). Ezért területe \(\displaystyle t_d=2\cdot \frac {1\cdot x}2\), az eredeti háromszög területe \(\displaystyle \frac 12\). Mivel az eredeti háromszög befogója \(\displaystyle \sqrt 2\) , ami 1 és \(\displaystyle x\) nagyságú részekre lett osztva, ezért \(\displaystyle x=\sqrt 2 -1\). Ezért \(\displaystyle t_d / t_h =2(\sqrt 2 -1)\approx 0,82843\). A deltoid területe az eredeti háromszög területének \(\displaystyle 82,84\%\)-a.


Statistics on problem K. 284.
153 students sent a solution.
6 points:92 students.
5 points:30 students.
4 points:10 students.
3 points:5 students.
2 points:5 students.
1 point:4 students.
0 point:5 students.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, February 2011

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley