KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum
Versenykiírás
Tudnivalók
Nevezési lap
Feladatok
Eredmények
Korábbi évek
Arcképcsarnok
Munkafüzet

Rendelje meg a KöMaL-t!

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 285. Az \overline{abcabc} és az \overline{ababab} hatjegyű számok aránya 55:54. Határozzuk meg az a, b, c számjegyek értékét.

(6 pont)

Ezt a feladatot csak 9. osztályosok küldhetik be.

A beküldési határidő 2011. március 10-én LEJÁRT.


Megoldás. A feltétel szerint \(\displaystyle 54\cdot \overline{abcabc}=55\cdot \overline{ababab}\), azaz \(\displaystyle 54\cdot (100100a+10010b+1001c)=55\cdot (101010a+10101b)\). Mivel \(\displaystyle 54=2\cdot 3^3\), \(\displaystyle 55=5\cdot 11\), \(\displaystyle 1001=13\cdot 11\cdot 7\) és \(\displaystyle 10101=3\cdot 7\cdot 13 \cdot 37\), ezért 3003-mal osztva \(\displaystyle 18\cdot (100a+10b+1c)=5\cdot (370a+37b)\), azaz \(\displaystyle 18\overline{abc}=185\overline{ab}\). Mivel 185 és 18 relatív prímek ezért \(\displaystyle \overline{abc}=185k\) és \(\displaystyle \overline{ab}=18k\). \(\displaystyle k=1\) esetén \(\displaystyle a=1\), \(\displaystyle b=8\), \(\displaystyle c=5\) megoldás. Számolásunk szerint \(\displaystyle c\) csak 0 v. 5 lehet, de a feladat szerint \(\displaystyle a<c\), ezért \(\displaystyle a<c=5\) lehet csak. Így \(\displaystyle 59\ge 18k\) miatt \(\displaystyle k=3\) lehet még. Ekkor azonban \(\displaystyle a=b=c=5\) lenne, ami nem tesz eleget a feladat kívánalmainak.

Az eredeti számok a 185185 és 181818 voltak, azaz \(\displaystyle a=1\), \(\displaystyle b=8\), \(\displaystyle c=5\).


A K. 285. feladat statisztikája
138 dolgozat érkezett.
6 pontot kapott:Antal István, Antalicz Balázs, Árvay Júlia, Aszalós Eszter, Balogh Tamás, Bátorfi János György, Csóti Annamária, Déri Tamás, Di Giovanni Márk, Doktor András, Domucza Katalin, Fehér Zsuzsanna, Francsics Fanny, Gosztonyi Dorottya, Gömbös Patrik, Gulis Dániel, Győrfi-Bátori András, Gyulánszki Dávid, Hoang Cuu Long, Kácsor Szabolcs, Katona Adrienn, Kiss 433 Ferenc, Kovács Norbert Krisztián, Kovács-Deák Máté, Lévai Botond Miklós, Nagy 718 Réka, Nagy 817 Krisztina, Németh Klára Anna, Pajor Péter, Pálya Zsófia, Persics Anna, Pogány Zsombor, Prajczer Petra, Rácz 413 Bence, Rovó Judit, Sánta Szilvia, Seller Károly, Somogyi Réka, Szelestei Dorottya, Szemesi Péter, Tekeli Miklós, Temesvári Fanni, Tihanyi Dániel, Tőkés Anna, Türr Viktor, Varga-Dudás Zsófia, Várhidi Zsóka, Vető Bálint, Vörös Zoltán János, Zoltán Éva Berta.
5 pontot kapott:47 versenyző.
4 pontot kapott:23 versenyző.
3 pontot kapott:8 versenyző.
2 pontot kapott:5 versenyző.
1 pontot kapott:2 versenyző.
0 pontot kapott:1 versenyző.
Nem versenyszerű:2 dolgozat.


  • A KöMaL 2011. februári matematika feladatai

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley