KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 292. Consider the points A(0,0), B(b,2), C(b,5), D(0,d) on the coordinate plane. Given that the points form a trapezium ABCD of area 25 units, and that b and d are positive integers, find the values of the missing coordinates of the vertices.

(6 points)

This problem is for grade 9 students only.

Deadline expired on 11 April 2011.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Az \(\displaystyle ABCD\) trapéz alapjai \(\displaystyle AD=d\) és \(\displaystyle BC=5-2=3\), a trapéz magassága az y-tengely és a vele párhuzamos \(\displaystyle BC\) egyenes távolsága: \(\displaystyle b\). A trapéz területe \(\displaystyle t=\frac{d+3}{2}\cdot b=25\), ahonnan \(\displaystyle d=\frac{50}b-3\). Mivel \(\displaystyle b\) és \(\displaystyle d\) pozitív egész számok, ezért \(\displaystyle b<50/3=16+1/3\), másrészről \(\displaystyle b\) osztója 50-nek. Ezért a következő eredmények születhetnek:

\(\displaystyle b\) 1 2 5 10
\(\displaystyle d\) 47 22 7 2


Statistics on problem K. 292.
155 students sent a solution.
6 points:80 students.
5 points:27 students.
4 points:7 students.
3 points:17 students.
2 points:7 students.
1 point:10 students.
0 point:3 students.
Unfair, not evaluated:4 solutions.


  • Problems in Mathematics of KöMaL, March 2011

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley