KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 295. (September 2011)

K. 295. How many digits does the number 2011201020092008...10987654321 have? Is it divisible by 3?

(6 pont)

Deadline expired on 10 October 2011.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A feladatbeli számot (jelöljük \(\displaystyle K\)-val) felépítő számokat csoportosítsuk számjegyeik száma szerint: 1-től 9-ig 9db egyjegyű, 10-től 99-ig 100db kétjegyű, 100-tól 999-ig 1000db háromjegyű és 1000-től 2011-ig 1012db négyjegyű. Ezek szerint \(\displaystyle K\) jegyeinek száma \(\displaystyle 9\cdot 1 + 100\cdot 2 + 1000\cdot 3 + 1012\cdot 4={\mathbf 7257}\). \(\displaystyle K\) pontosan akor osztható hárommal, ha számjegyei összege osztható hárommal. 0-tól 9-ig a számjegyek összege \(\displaystyle s=45\). 0-től 999-ig minden számjegy pontosan 100-szor szerepelt, 1000-től 1999-ig ismét 100-szor, az 1-t kivéve, ami 1100-szor. 2000-től 2011-ig a számjegyek összege \(\displaystyle 12\cdot 2 + 2\cdot 1 + s=71\). Tehát \(\displaystyle K\) számjegyeinek összege \(\displaystyle 200s+1000+71=10071\), ami osztható 3-mal (mert számjegyeinek összeg 9).


Statistics:

321 students sent a solution.
6 points:121 students.
5 points:53 students.
4 points:26 students.
3 points:22 students.
2 points:60 students.
1 point:14 students.
0 point:23 students.
Unfair, not evaluated:2 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley