KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 312. (November 2011)

K. 312. The vertices of a trapezium ABCD lying in the first quadrant of the coordinate plane are A(a;0); B(8;b); C(3;b); D(0;0), where a and b are integers. Given that the area of the trapezium is 121, find the missing coordinates.

(6 pont)

Deadline expired on 12 December 2011.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. A trapéz \(\displaystyle AD\) és \(\displaystyle BC\) oldalai párhuzamosak az \(\displaystyle x\)-tengellyel, \(\displaystyle AD\) hossza \(\displaystyle a\), \(\displaystyle BC\) hossza 5, a trapéz magassága pedig \(\displaystyle b\). A trapéz területe: \(\displaystyle \frac{(a+5)\cdot b}{2}=121\), azaz \(\displaystyle (a+5)\cdot b = 2\cdot 11^2\). Tudjuk, hogy \(\displaystyle a>0\), \(\displaystyle b>0\).

Az \(\displaystyle a+5\) lehetséges értékei: 11 22 121 242
Ekkor az \(\displaystyle a\) értékei: 6 17 116 237
A hozzátartozó \(\displaystyle b\) értékei: 22 11 2 1

A négy lehetséges megoldás a táblázatból kiolvasható.


Statistics:

209 students sent a solution.
6 points:67 students.
5 points:10 students.
4 points:26 students.
3 points:5 students.
2 points:26 students.
1 point:49 students.
0 point:20 students.
Unfair, not evaluated:6 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley