KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 320. (January 2012)

K. 320. The four-digit number \overline{abcd} consists of four different positive digits, and \overline{abcd} +\overline{bcda} +\overline{cdab} +\overline{dabc} =31\;108. How many such four-digit numbers \overline{abcd} are there?

(6 pont)

Deadline expired on February 10, 2012.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Az egyenlet baloldalán mind a négy számjegy minden helyiértéken pontosan egyszer szerepel. Vagyis: \(\displaystyle 1111(a+b+c+d)=31108\), amiből \(\displaystyle a+b+c+d=28\). Mivel \(\displaystyle 7+8+9=24\), ezért a számjegyek lehetséges legkisebb értéke \(\displaystyle 28-24=4\). Ekkor a négy számjegy: 4, 7, 8, 9. Ha a legkisebb számjegy az 5, akkor a többi számjegy csak a 6, 8, 9 lehet. Más megoldás nincs. Mindkét esetben \(\displaystyle 4!=24\) lehetőség van a számjegyek sorrendjére, ez összesen 48 megfelelő négyjegyű szám.


Statistics:

198 students sent a solution.
6 points:62 students.
5 points:51 students.
4 points:36 students.
3 points:20 students.
2 points:11 students.
1 point:7 students.
0 point:6 students.
Unfair, not evaluated:5 solutions.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley