KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 356. Two digits of the six-digit number 2_01_2 are missing. What digits may be written in the vacant places, so that the resulting six-digit number is divisible by 36 and also by 117?

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 January 2013.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Mivel \(\displaystyle 36 = 9\cdot4\) és \(\displaystyle 117 = 9\cdot13\), továbbá a 9, a 4 és a 13 páronként relatív prímek, ezért a keresett szám a feltételeknek pontosan akkor tesz eleget, ha osztható 4-gyel, 9-cel és 13-mal. A tízes helyiértékre 1, 3, 5, 7, 9 kerülhet, hogy a szám 4-gyel osztható legyen. A meglévő számjegyek összege 5, így a számjegyek összege 9-cel osztható lesz, ha a hiányzó két számjegy összege 4 vagy 13 (22 már nem elérhető). Ebből és az előzőekben megadott lehetőségekből a következő számok teljesítik mindkét feltételt: 230112, 210132, 280152, 260172, 240192. A keresett szám 13-mal is osztható. Ennek a feltételnek csak a 210132 tesz eleget, vagyis az 1 és a 3 a két hiányzó számjegy.


Statistics on problem K. 356.
182 students sent a solution.
6 points:104 students.
5 points:47 students.
4 points:13 students.
3 points:8 students.
2 points:7 students.
1 point:1 student.
Unfair, not evaluated:2 solutions.


  • Problems in Mathematics of KöMaL, December 2012

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley