KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 403. How many digits of 8 are there in the decimal form of the sum 0.9+0.99+0.999+\dots+0.
\underbrace{999\dots 9}_{2013\; \rm{pieces}}?

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 February 2014.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Írjuk az összeget más alakban!

0{,}9+0{,}99+0{,}999+\dots+0{,}
\underbrace{999\dots 9}_{2013\;\rm{db}}=(1-0,1)+(1-0,01)+(1-0,001)+
...+(1-0{,}
\underbrace{000\dots 01}_{2013\;\rm{db}}) =

= 2013-0{,}
\underbrace{111\dots 1}_{2013\;\rm{db}}=2012{,}
\underbrace{888\dots 89}_{2013\;\rm{db}}.

Tehát az összeg tizedestört alakja 2012 darab 8-as számjegyet tartalmaz.


Statistics on problem K. 403.
180 students sent a solution.
6 points:106 students.
5 points:36 students.
4 points:11 students.
3 points:12 students.
2 points:2 students.
1 point:4 students.
Unfair, not evaluated:9 solutions.


  • Problems in Mathematics of KöMaL, January 2014

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley