KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 412. (February 2014)

K. 412. The centre of a circle of radius \sqrt{2} lies on the circumference of a unit circle. The two circles divide the plane into four parts, two of which are crescent shaped. What is the area of the smaller crescent?

(6 pont)

Deadline expired on 10 March 2014.


Sorry, the solution is available only in Hungarian. Google translation

Megoldás. Legyen A a nagyobb, B a kisebb kör középpontja, C és D a körök metszéspontjai. Ekkor AB, BC, BD a kisebbik kör sugarai, ezért hosszuk 1, míg AC és AD a nagyobb kör sugarai, ezért hosszuk \sqrt2. Tehát az ABC és az ABD háromszögek oldalai 1, 1, \sqrt2, azaz ezek egyenlő szárú derékszögű háromszögek, mindkettőnél a B csúcsnál van a derékszög. Emiatt B a CD szakasz felezőpontja, így CD a kisebb kör átmérője, és az ACD háromszög is egyenlő szárú, derékszögű háromszög. Ha a H-val jelölt hold területéhez hozzáadjuk az S-sel jelölt körszelet területét, akkor éppen a kisebb, egységnyi sugarú kör területének felét kapjuk meg (S és H egyesítése félkör), amelynek nagysága \pi/2. S területét úgy kaphatjuk, hogy az ACD negyedkör területéből kivonjuk az ACD háromszög területét. Az ACD negyedkör területe \frac{(\sqrt2)^{2}\pi}{2}=\pi/2, az ACD háromszög területe pedig \frac{\sqrt2\cdot\sqrt2}{2}=1, ezért S területe \pi/2-1, H területe pedig \pi/2-(\pi/2-1)=1.

Megjegyzés: Ha észrevesszük, hogy a nagy kör negyedének területe megegyezik a kis kör területének felével, akkor látszik, hogy H és az ACD háromszög területe megegyezik, hiszen mindkettőt az S körszelet egészíti az azonos területű negyed-, illetve félkörré.


Statistics:

>
109 students sent a solution.
6 points:55 students.
5 points:25 students.
4 points:8 students.
3 points:5 students.
2 points:4 students.
1 point:4 students.
0 point:4 students.
Unfair, not evaluated:3 solutions.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley