KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

Kifordítható

tetraéder

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 429. The measure of the angle lying at vertex \(\displaystyle C\) of an isosceles triangle \(\displaystyle ABC\) is \(\displaystyle 120^\circ\). The perpendicular bisectors of the legs intersect the base at the points \(\displaystyle D\) and \(\displaystyle E\). Show that the area of triangle \(\displaystyle ABC\) is three times the area of triangle \(\displaystyle CDE\).

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 November 2014.


Statistics on problem K. 429.
110 students sent a solution.
6 points:Béda Gergely, Csilling Eszter, Csuha Boglárka, Dévényi Dalma, Farkas Lilla, Farkas Panka, Fekete Balázs Attila, Harsányi Benedek, János Zsuzsa Anna, Járomi Bence, Kollár Johanna, Kós Anna, Kovács 124 Marcell, Kovács Marcell Dorián , Kulcsár Simon, Majzik Bendegúz Dániel, Mészáros Melinda, Mihályházi Péter, Németh 962 Ambrus, Németh Csilla Márta, Németh Levente , Oravecz Janka Éva, Orova Katinka, Öcsi Rebeka, Paulovics Péter, Rimai 217 Dániel, Sipos Fanni Emma, Sisák László Sándor, Slenker Balázs, Szalay Csilla, Szalay Gergő, Szarka Álmos, Tamási Kristóf Áron, Thuróczy Mylan, Tószegi Fanni, Valkó Bence, Varga 274 Tamás.
5 points:26 students.
4 points:9 students.
3 points:10 students.
2 points:13 students.
1 point:7 students.
0 point:3 students.
Unfair, not evaluated:5 solutions.


  • Problems in Mathematics of KöMaL, October 2014

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley