Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
 Already signed up? New to KöMaL?

Problem K. 430. (October 2014)

K. 430. Consider the notation $\displaystyle 33335 = 3_{4}5_{1}$, that is, the number in the subscript denotes the number of identical digits next to each other (the numbers in the subscripts must be positive integers). Determine the values of the letters in the expression $\displaystyle 1_{x}4_{y}3_{z}8_{w}+ 4_{p}8_{q}3_{r} = 5_{2}9_{3} 7_{3}2_{2} 1_{1}$.

(6 pont)

Deadline expired on November 10, 2014.

Statistics:

 97 students sent a solution. 6 points: Agócs Katinka, Ágoston Tamás, Csilling Eszter, Dömötör Emőke, Encz Koppány, Farkas Ádám, Farkas Lilla, Fazekas 15 Levente, Fekete Balázs Attila, Fekete Zsófia, János Zsuzsa Anna, Járomi Bence, Juhász Csaba, Katona Kitti, Kollár Johanna, Kostyál Domonkos, Kubovics Márton, Maksa Gergő, Márton Anna, Mészáros Melinda, Mihályházi Péter, Németh Csilla Márta, Orova Katinka, Öcsi Rebeka, Páhoki Tamás, Paulovics Péter, Perényi Gellért, Pongrácz Edina, Porkoláb Mercédesz, Rátkai Petra, Rimai 217 Dániel, Sipos Fanni Emma, Slenker Balázs, Szabadkai Beatrix, Szalay Gergő, Szarka Álmos, Szőcs Krisztina, Tamási Kristóf Áron, Tardos Virág, Thuróczy Mylan, Tószegi Fanni, Valkó Bence, Veliczky Barnabás, Wenhardt Kata. 5 points: 10 students. 4 points: 12 students. 3 points: 19 students. 2 points: 5 students. 1 point: 1 student. 0 point: 4 students. Unfair, not evaluated: 2 solutions.

Problems in Mathematics of KöMaL, October 2014