Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
Already signed up?
New to KöMaL?
I want the old design back!!! :-)

Problem K. 436. (November 2014)

K. 436. How many perfect squares are there in the sequence \(\displaystyle a_{n}= 1! + 2! + \ldots + n!\)? (\(\displaystyle k!\) denotes the product of the integers 1 to \(\displaystyle k\).)

(6 pont)

Deadline expired on December 10, 2014.


Statistics:

79 students sent a solution.
6 points:Agócs Katinka, Benda Orsolya, Csilling Eszter, Csiszer Bence, Csuha Boglárka, Duzmath Bálint, Encz Koppány, Farkas Lilla, Fekete Balázs Attila, Földi Anna, Harsányi Benedek, Hegedűs 330 Marcell, János Zsuzsa Anna, Kollár Johanna, Kovács 124 Marcell, Kozma Dávid Márk, Kulcsár Simon, Maksa Gergő, Márton Anna, Mihályházi Péter, Nagy Viktor, Németh Csilla Márta, Páhoki Tamás, Paulovics Péter, Perényi Gellért, Pongrácz Edina, Rátkai Petra, Rumi Anna Sára, Simon411 Máté, Sisák László Sándor, Slenker Balázs, Tamási Kristóf Áron, Thuróczy Mylan, Tószegi Fanni, Tóth 802 Máté, Valentiny Anett, Valkó Bence, Varga 274 Tamás, Wenczel Kata.
5 points:19 students.
4 points:3 students.
3 points:2 students.
2 points:4 students.
1 point:2 students.
0 point:8 students.
Unfair, not evaluated:2 solutions.

Problems in Mathematics of KöMaL, November 2014