KöMaL - Középiskolai Matematikai és Fizikai Lapok
 English
Információ
A lap
Pontverseny
Cikkek
Hírek
Fórum

Rendelje meg a KöMaL-t!

KöMaL Füzetek 1: Tálalási javaslatok matematika felvételire

VersenyVizsga portál

Kísérletek.hu

Matematika oktatási portál

K. 45. In how many different ways is it possible to place a king and a castle on the chessboard so that neither attacks the other? (The fields of the chessboard are labelled by combinations of letters and numbers in the conventional way. Two configurations count as different if at least one of the two chessmen is placed on different fields in the two cases.)

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 October 2005.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás. Vizsgáljuk meg, hogy a király elhelyezkedése szerint hányféle helyre kerülhet a bástya.

A) A király a tábla sarkában van (erre négy lehetőség van). Ekkor a bástya nem kerülhet a király sorába és oszlopába, valamint a király helyével átlósan szomszédos egyetlen mezőre (ez összesen 16 mező). A bástya tehát 48 mezőn állhat, így ebben az esetben 4.48=192 lehetőséget kapunk.

B) A király a tábla szélén áll, de nem a sarokban (a táblán 24 ilyen mező van). Ekkor a bástya nem kerülhet a király sorába és oszlopába, valamint a király helyével átlósan szomszédos két mezőre (ez összesen 17 mező). A bástya tehát 47 mezőn állhat, így ebben az esetben 24.47=1128 lehetőséget kapunk.

C) A király nem a tábla szélén áll (a táblán 36 ilyen mező van). Ekkor a bástya nem kerülhet a király sorába és oszlopába, valamint a király helyével átlósan szomszédos négy mezőre (ez összesen 19 mező). A bástya tehát 45 mezőn állhat, így ebben az esetben 36.45=1620 lehetőséget kapunk. A három esetből összesen 192+1128+1620=2940 lehetőség adódik a kívánt elhelyezésekre.


Statistics on problem K. 45.
286 students sent a solution.
6 points:163 students.
5 points:53 students.
4 points:18 students.
3 points:8 students.
2 points:7 students.
1 point:10 students.
0 point:15 students.
Unfair, not evaluated:12 solutions.


  • Problems in Mathematics of KöMaL, September 2005

  • Támogatóink:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
    MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley