Mathematical and Physical Journal
for High Schools
Issued by the MATFUND Foundation
 Already signed up? New to KöMaL?

# Problem K. 451. (February 2015)

K. 451. In the game of rock-paper-scissors, players need to observe three rules: the rock blunts the scissors, the scissors cut the paper, and the paper wraps the rock. These rules decide which weapon wins. How many new rules need to be formulated if four extra weapons are added to the game (for example, matchstick, spectacles, telephone, stamper)? What is the fundamental principle of forming the rules, in order that the new game should be balanced, like the original game?

(6 pont)

Deadline expired on March 10, 2015.

### Statistics:

 76 students sent a solution. 6 points: Bácskai Zsombor, Csányi Dávid, Csilling Eszter, Csizmadia Róbert, Csuha Boglárka, Fekete Balázs Attila, Korpás Isabel, Morvai Balázs, Nagy 527 Balázs, Németh Csilla Márta, Páhoki Tamás, Paulovics Péter, Sisák László Sándor, Szilágyi Botond, Szűcs 865 Eszter, Tamási Kristóf Áron, Tószegi Fanni. 5 points: Agócs Katinka, Ágoston Tamás, Béda Gergely, Benda Orsolya, Dömötör Emőke, Faragó Frigyes, Farkas Lilla, János Zsuzsa Anna, Koronczi Fanni, Kovács 124 Marcell, Mihályházi Péter, Nagy Viktor, Péri Gergő Gábor, Slenker Balázs. 4 points: 8 students. 3 points: 22 students. 2 points: 8 students. 1 point: 1 student. 0 point: 4 students. Unfair, not evaluated: 2 solutions.

Problems in Mathematics of KöMaL, February 2015