KöMaL - Középiskolai Matematikai és Fizikai Lapok
Sign In
Sign Up
 Magyar
Information
Contest
Journal
Articles

 

Problem K. 497. (February 2016)

K. 497. In a right-angled triangle \(\displaystyle ABC\), \(\displaystyle BC = 5\) and \(\displaystyle AB = 12\). \(\displaystyle M\) is the intersection of hypotenuse \(\displaystyle AC\) with the arc of radius \(\displaystyle AB\) centred at \(\displaystyle A\), and \(\displaystyle N\) is the intersection of hypotenuse \(\displaystyle AC\) with the arc \(\displaystyle BC\) centred at \(\displaystyle C\). Determine the distance between points \(\displaystyle M\) and \(\displaystyle N\).

(6 pont)

Deadline expired on 10 March 2016.


Statistics:

104 students sent a solution.
6 points:85 students.
5 points:4 students.
4 points:4 students.
3 points:7 students.
2 points:3 students.
Unfair, not evaluated:1 solution.

Our web pages are supported by:   Ericsson   Cognex   Emberi Erőforrás Támogatáskezelő   Emberi Erőforrások Minisztériuma   Nemzeti Tehetség Program    
MTA Energiatudományi Kutatóközpont   MTA Wigner Fizikai Kutatóközpont     Nemzeti
Kulturális Alap   ELTE   Morgan Stanley