KöMaL - Mathematical and Physical Journal for Secondary Schools
Hungarian version Information Contest Journal Articles News
Conditions
Entry form to the contest
Problems and solutions
Results of the competition
Problems of the previous years

 

 

Order KöMaL!

tehetseg.hu

Ericsson

Google

Emberi Erőforrások Minisztériuma

Emberi Erőforrás Támogatáskezelő

Oktatáskutató és Fejlesztő Intézet

ELTE

Competitions Portal

K. 65. x is a real number, such that x+\frac{1}{x}=5. Determine the exact values of x^2+\frac{1}{x^2} and x^3+\frac{1}{x^3}.

(6 points)

This problem is for grade 9 students only.

Deadline expired on 10 January 2006.


Google Translation (Sorry, the solution is published in Hungarian only.)

Megoldás: Használjuk fel, hogy \left(x+{1\over x}\right)^2=x^2+2\cdot x\cdot{1\over x}+{1\over x^2}=x^2+{1\over x^2}+2. Ebből adódik, hogy x^2+{1\over x^2}=\left(x+{1\over x}\right)^2-2=5^2-2=23.

Használjuk fel, hogy \left(x+{1\over x}\right)^3=x^3+3\cdot x^2\cdot{1\over x}+3\cdot x\cdot{1\over x^2}+{1\over x^3}=

=x^3+3x+{3\over x}+{1\over x^3}=x^3+{1\over x^3}+3\cdot\left(x+{1\over x}\right).

Ebből adódik, hogy x^3+{1\over x^3}=\left(x+{1\over x}\right)^3-3\cdot\left(x+{1\over x}\right)=5^3-3\cdot5=110.


Statistics on problem K. 65.
198 students sent a solution.
6 points:151 students.
5 points:6 students.
4 points:14 students.
3 points:7 students.
2 points:4 students.
0 point:10 students.
Unfair, not evaluated:6 solutions.


  • Problems in Mathematics of KöMaL, December 2005

  • Our web pages are supported by: Ericsson   Google   SzerencsejátĂ©k Zrt.   Emberi ErĹ‘források MinisztĂ©riuma   Emberi ErĹ‘forrás TámogatáskezelĹ‘   OktatáskutatĂł Ă©s FejlesztĹ‘ IntĂ©zet   ELTE   Nemzeti TehetsĂ©g Program